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Power-up: A Reanalysis of ‘Power Failure’ in Neuroscience
Using Mixture Modeling
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Recently, evidence for endemically low statistical power has cast neuroscience findings into doubt. If low statistical power plagues
neuroscience, then this reduces confidence in the reported effects. However, if statistical power is not uniformly low, then such blanket
mistrust might not be warranted. Here, we provide a different perspective on this issue, analyzing data from an influential study reporting
a median power of 21% across 49 meta-analyses (Button et al., 2013). We demonstrate, using Gaussian mixture modeling, that the sample
of 730 studies included in that analysis comprises several subcomponents so the use of a single summary statistic is insufficient to
characterize the nature of the distribution. We find that statistical power is extremely low for studies included in meta-analyses that
reported a null result and that it varies substantially across subfields of neuroscience, with particularly low power in candidate gene
association studies. Therefore, whereas power in neuroscience remains a critical issue, the notion that studies are systematically under-
powered is not the full story: low power is far from a universal problem.
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Introduction
Trust in empirical findings is of vital importance to scientific
advancement, but publishing biases and questionable research
practices can cause unreliable results (Nosek et al., 2012; Button

et al., 2013). In recent years, scientists and funders across the
biomedical and psychological sciences have become concerned
with what has been termed a crisis of replication and reliability
(Barch and Yarkoni, 2013).

One putative marker for the reliability of results is statistical
power: the probability that a statistically significant result will be
declared given that the null hypothesis is false (i.e., a real effect
exists). It can be shown that, in the context of field-wide under-
powered studies, a smaller proportion of significant findings will
reflect true positives than if power is universally high (Ioannidis,
2005). A recent influential study by Button et al. (2013) calculated
statistical power across all meta-analyses published in 2011 that
were labeled as “neuroscience” by Thomson Reuters Web of Sci-
ence. It concluded that neuroscience studies were systematically
underpowered, with a median statistical power of 21%, and that
the proportion of statistically significant results that reflect true
positives is therefore likely to be low. The prevalence of very low
power has serious implications for the field. If the majority of
studies are indeed underpowered, then statistically significant
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Significance Statement

Recently, researchers across the biomedical and psychological sciences have become concerned with the reliability of results. One
marker for reliability is statistical power: the probability of finding a statistically significant result given that the effect exists.
Previous evidence suggests that statistical power is low across the field of neuroscience. Our results present a more comprehensive
picture of statistical power in neuroscience: on average, studies are indeed underpowered—some very seriously so— but many
studies show acceptable or even exemplary statistical power. We show that this heterogeneity in statistical power is common
across most subfields in neuroscience. This new, more nuanced picture of statistical power in neuroscience could affect not only
scientific understanding, but potentially policy and funding decisions for neuroscience research.

The Journal of Neuroscience, August 23, 2017 • 37(34):8051– 8061 • 8051

https://creativecommons.org/licenses/by/4.0


findings are untrustworthy and scientific inference will often be
misinformed. This analysis provoked considerable debate in the
field about whether neuroscience does indeed suffer from en-
demic low statistical power (Bacchetti, 2013; Quinlan, 2013). We
sought to add nuance to this debate by reanalyzing the original
dataset using a more fine-grained approach and provide a differ-
ent perspective on statistical power in neuroscience.

We extended the analyses of Button et al. (2013) using data
from all 730 individual studies, which provided initial results that
were consistent with the original report (which used only the
median-sized study in 49 meta-analyses). To quantify the heter-
ogeneity of the dataset we made use of Gaussian mixture model-
ing (GMM) (Corduneanu and Bishop, 2001), which assumes that
the data may be described as being composed of multiple Gaussian
components. We then used model comparison to find the most
parsimonious model for the data. We also categorized each study
based on its methodology to examine whether low power is com-
mon to all fields of neuroscience.

We find strong evidence that the distribution of power across
studies is multimodal, with the most parsimonious model tested
including four components. Moreover, we show that candidate
gene association studies and studies from meta-analyses with null
results make up the majority of extremely low-powered studies in
the analysis of Button et al. (2013). Although median power in
neuroscience is low, the distribution of power is heterogeneous
and there are clusters of adequately and even well powered stud-
ies in the field. Therefore, our in-depth analysis reveals that the
crisis of power is not uniform: instead, statistical power is ex-
tremely diverse across neuroscience.

Materials and Methods
Reanalyzing “power failures”
Our initial analysis took a similar approach to that of Button et al. (2013),
but, contrary to their protocol (which reported power only for the
median-sized study in each meta-analysis: N � 49), we report power for
each of the 730 individual studies (see Fig. 3a, Table 1). As in the original
analysis, we defined power as the probability that a given study would
declare a significant result assuming that the population effect size was
equal to the weighted mean effect size derived from the corresponding meta-
analysis (note that this differs from post hoc power, in which the effect size
would be assumed to be equal to the reported effect size from each individual
study; O’Keefe, 2007).

For experiments with a binary outcome, power was calculated by as-
suming that the expected incidence or response rate for the control group
(i.e., the base rate) was equal to that reported in the corresponding meta-
analysis and, similarly, used an assumed “treatment effect” (odds or risk
ratio) equal to that given by each meta-analysis. The test statistic used for
the calculation was the log odds-ratio divided by its SE. The latter was
derived from a first-order approximation and estimated by the square
root of the sum of the reciprocals of the expected values of the counts in
the 2-by-2 summary table. The test statistic itself was then referenced to
the standard normal distribution for the purposes of the power calcula-
tion. For studies reporting Cohen’s d, the assumed treatment effect was
again taken directly from the corresponding meta-analysis and all power
calculations were based on the standard, noncentral t distribution.
For comparability with the original study, we calculated the median
power across all 730 individual studies which was equal to 23%, close to
the 21% reported by Button et al. (2013).

Figure 1 shows an overview of our analytical process. We additionally
classified each study according to methodology: candidate gene associa-
tion studies (N � 234), psychology (N � 198), neuroimaging (N � 65),
treatment trials (N � 145), neurochemistry (N � 50), and a miscella-
neous category (N � 38 studies from N � 2 meta-analyses). Two inde-
pendent raters categorized the 49 meta-analyses into these six subfields,
with 47/49 classified consistently; the remaining two were resolved after
discussion. Before continuing our analysis in more depth, we present the

reader with results that are directly comparable to the analysis of Button
et al. (2013) (with the addition of the subfields; Table 2). These results are
intended for comparison with our more nuanced characterization of the
distributions using GMMs presented below; given the results of those
GMMs (which suggest the these distributions are multimodal and there-
fore not well characterized by a single measure of central tendency), they
should not be used to draw strong inferences.

One or many populations?
The common measures of central tendency (mean, median, and mode)
may not always characterize populations accurately because distribu-
tions can be complex and made up of multiple “hidden” subpopulations.
Consider the distribution of height in the United States: the mean is 168.8
cm (Fryar et al., 2012). This statistic is rarely reported because the distri-
bution comprises two distinct populations: male (175.9 cm, 5 th–95 th

percentile 163.2–188.2 cm) and female (162.1 cm, 5 th–95 th percentile
150.7–173.7 cm). The mean of the male population is greater than the
95 th percentile of the female population. Therefore, a single measure of
central tendency fails to describe this distribution adequately.

In an analogous fashion, the original study by Button et al. (2013)
reported a median of 21% power, which could be interpreted as implying
a degree of statistical homogeneity across neuroscience. The use of the
median as a summary statistic while having the straightforward interpre-
tation of “half above and half below” also implies that the power statistics
are drawn from a distribution with a single central tendency. As we show
below, this assumption is contradicted by our analyses, which makes the
median statistic difficult to interpret. It should be noted that Button et al.
(2013) themselves described their results as demonstrating a “clear
bimodal distribution.” Therefore we explored the possibility that the
power data originated from a combination of multiple distributions
using GMM.

GMM (similar to latent class analysis and factor models; Lubke and
Muthén, 2005) can be used to represent complex density functions in
which the central limit theorem does not apply, such as in the case of
bimodal or multimodal distributions. We fit GMMs with varying num-
bers of k unknown components to the data and performed model selec-
tion using Bayesian information criteria (BIC) scores to compare models
with different fit and complexity (i.e., the higher the number of k
unknown components, the more complex the model). This allowed us to
take a data-driven approach, as opposed to direct mixture models using
a set number of components: therefore, we were agnostic as to the num-
ber of components that emerged from the model. The GMM with the
lowest BIC identifies the most parsimonious model, trading model fit
against model complexity. A difference in BIC between models of 10 or
above on a natural logarithm scale is indicative of strong evidence in
support of the model with the lower score (Kass and Raftery, 1995). To
ensure that we used the most suitable GMM for this dataset, we ran
different GMM models: standard GMMs, regularized GMMs, and
Dirichlet process GMMs (DPGMMs; see below for full methods and Fig.
2 for model comparison and selection). The results were similar using
each of these techniques (Fig. 2).

Finite Gaussian mixture model. For a finite GMM, the corresponding
likelihood function is given by the following (Corduneanu and Bishop,
2001):

P�D��, � � � �
n�1

N � �i�1

K
�i N �xn��i��

where �i denotes the mixing coefficient (proportions of the ith compo-
nent), N �xn��i� denotes the conditional probability of the observation
xn given by a Gaussian distribution with parameters �i, and D denotes the
whole dataset of observations, xn. Generally speaking, this means that we
believe that there is an underlying generative structure to the observed
data and that a mixture of Gaussian components would be a reasonable
description/approximation of the true generative process of these data.
That is, we assume that the data D have been generated from a mixture
of Gaussian distributions with varying means, variances, and weights
(model parameters), which we want to uncover. To do so, we perform
model inversion and find the point estimates of the model parameters
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that maximize the likelihood (see the equation above) of the observed
data (maximum likelihood estimation).

Model inversion is performed using the iterative expectation–maximi-
zation algorithm, which finds a local maximum of the likelihood func-
tion given initial starting parameters. We performed 50 restarts with
kmeans�� initialization (Arthur and Vassilvitskii, 2007). Multiple re-
starts were performed to find the global maximum of the likelihood (i.e.,
the best GMM for the data: the parameters that maximize the chance of
observing the data), as opposed to a local maximum. This allowed us to
ensure that convergence was achieved for all GMMs on all datasets.

Traditionally, finite mixture modeling approaches require the number
of components to be specified in advance of analyzing the data. That is,
for each finite Gaussian mixture model fitted to the data, one is required

to input the number of components K present in the mixture (model
inversion only estimates the parameters for each component). Finding
the number of components present in the data is a model selection prob-
lem and requires fitting multiple GMMs with varying numbers of
components to the data, comparing the model evidence for each fit, and
selecting the most parsimonious model for the data in question (Bishop,
2006; Gershman and Blei, 2012; Murphy, 2012).

It is worth noting, however, that GMMs can be subject to instabilities
such as singularities of the likelihood function. Specifically, it is possible
for one component to “collapse” all of its variance onto a single data
point, leading to an infinite likelihood (Bishop, 2006; Murphy, 2012),
and to incorrect parameter estimation for the model. Multiple tech-
niques have been developed to address this problem. The simplest and

Table 1. Characteristics and classification of included meta-analyses

Study N Cohen’s d Odds ratio CI Significance Classification

Babbage et al., 2011 13 �1.11 �0.97 to �1.25 * Psychology
Bai, 2011 18 1.47 1.22–1.77 * Genetic
Björkhem-Bergman et al., 2011 6 �1.20 1.60 – 8.00 * Treatment
Bucossi et al., 2011 21 0.41 0.17– 0.65 * Neurochemistry
Chamberlain et al., 2011 11 �0.51 0.83–1.08 * Psychology
Chang et al., 2011a 56 �0.19 �0.29 to �0.10 * Psychology
Chang et al., 2011b 6 0.98 0.86 –1.12 — Genetic
Chen et al., 2011 12 0.60 0.52– 0.69 * Miscellaneous
Chung and Chua, 2011 11 0.67 0.43–1.04 — Treatment
Domellöf et al., 2011 14 2.12 1.59 –2.78 * Psychology
Etminan et al., 2011 14 0.80 0.70 – 0.92 * Treatment
Feng et al., 2011 4 1.20 1.04 –1.40 * Genetic
Green et al., 2011 17 �0.59 �0.93 to �0.26 * Neurochemistry
Han et al., 2011 14 1.35 1.06 –1.72 * Genetic
Hannestad et al., 2011 13 �0.13 �0.55 to 0.29 — Treatment
Hua et al., 2011 27 1.13 1.05–1.21 * Genetic
Lindson and Aveyard, 2011 8 1.05 0.92–1.19 — Treatment
Liu et al., 2011a 12 1.04 0.88 –1.22 — Genetic
Liu et al., 2011b 6 0.89 0.82– 0.96 * Genetic
MacKillop et al., 2011 57 0.58 0.51– 0.64 * Psychology
Maneeton et al., 2011 5 1.67a 1.23–2.26 * Treatment
Ohi et al., 2011 6 1.12 1.00 –1.26 * Genetic
Olabi et al., 2011 14 �0.40 �0.62 to �0.19 * Brain imaging
Oldershaw et al., 2011 10 �0.51 �0.73 to �0.28 * Psychology
Oliver et al., 2011 7 0.86 0.79 – 0.95 * Treatment
Peerbooms et al., 2011 36 1.26 1.09 –1.46 * Genetic
Pizzagalli, 2011 22 0.92 0.44 –1.39 * Treatment
Rist et al., 2011 5 2.06 1.33–3.19 * Miscellaneous
Sexton et al., 2011 8 0.43 0.06 – 0.80 * Brain imaging
Shum et al., 2011 11 0.89 0.75–1.02 * Psychology
Sim et al., 2011 2 1.23a 1.08 –1.52 * Treatment
Song et al., 2011 12 0.15 0.04 – 0.26 * Neurochemistry
Sun et al., 2011 6 1.93 1.55–2.41 * Genetic
Tian et al., 2011 4 1.26 0.95–1.57 * Treatment
Trzesniak et al., 2011 11 1.98 1.33–2.94 * Brain imaging
Veehof et al., 2011 8 0.37 0.20 – 0.53 * Treatment
Vergouwen et al., 2011 24 0.83 0.74 – 0.93 * Treatment
Vieta et al., 2011 10 0.68a 0.60 – 0.77 * Treatment
Wisdom et al., 2011 53 �0.14 �0.21 to �0.07 * Genetic
Witteman et al., 2011 26 �1.41 �1.76 to �1.05 * Psychology
Woon and Hedges, 2011 24 �0.60 �0.83 to �0.37 * Brain imaging
Xuan et al., 2011 20 1.00 0.86 –1.16 — Genetic
Yang et al., 2011a, cohort 14 1.38a 1.18 –1.61 * Miscellaneous
Yang et al., 2011a, case– control 7 2.48 1.93–3.19 * Miscellaneous
Yang et al., 2011b 3 0.67 0.43– 0.92 * Treatment
Yuan et al., 2011 14 4.98 3.97– 6.23 * Genetic
Zafar et al., 2011 8 1.07a 0.91–1.27 — Treatment
Zhang et al., 2011 12 1.27 1.01–1.59 * Genetic
Zhu et al., 2011 8 0.84 0.18 –1.49 * Brain imaging

Classification performed by two independent raters.
aRelative risk.

*p � 0.05.
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most commonly used technique is to intro-
duce a regularization parameter. Another is
to adopt a fully Bayesian approach and apply
soft constraints on the possible range of likely
parameter values, therefore preventing prob-
lematic and unrealistic parameter values. Both
methodologies were used in this study and we
report on the resulting analysis for both imple-
mentations in the model selection section
(below).

Finite Gaussian mixture model with regular-
ization. In typical finite mixture models, a reg-
ularization parameter can be added to avoid
likelihood singularities. To do so, a very small
value is added to the diagonal of the covariance
matrix, enforcing positive-definite covariance
and preventing infinitely small precision param-
eters for individual components. This model
specification enables one to address the issue of
“collapsing” components, but also enforces simpler
explanations of the data, favoring models with
fewer components. The larger the regulariza-
tion parameter, the simpler the models will be,
because single components will tend to encom-
pass a larger subspace of the data partition. In
this study, we introduced a regularization pa-
rameter of 0.001, which represents a reasonable
trade-off between preventing overfitting compo-
nents to noise in the dataset while capturing the
most salient features from the data (the sepa-
rate peaks), thus providing a better generative
model of the data than using nonregularized
GMMs. We used this approach for our primary
inferences.

Dirichlet process Gaussian mixture model. DPGMMs are a class of
Bayesian nonparametric methods that avoid the issue of model selection
when identifying the optimal number of components in a mixture
model (Gershman and Blei, 2012; Murphy, 2012). With DPGMMs, we
expand the original GMM model to incorporate a prior over the mixing
distribution and a prior over the component parameters (mean and
variance of components). Common choices for DPGMM priors are con-
jugate priors such as the normal-inverse-Wishart distribution over the
mean and covariance matrix of components and a nonparametric prior
over mixing proportions based on the DP.

The DP, often referred to as the Chinese restaurant process or the stick-
breaking process, is a distribution over infinite partitions of integers (Gersh-
man and Blei, 2012; Murphy, 2012). As a result, the DPGMM theoretically
allows for an infinite number of components because it lets the number of
components grow as the amount of data increases. The DP assigns each
observation to a cluster with a probability that is proportional to the number
of observations already assigned to that cluster. That is, the process will tend
to cluster data points together, depending on the population of the existing
cluster and a concentration parameter �. The smaller the � parameter, the
more likely it is that an observation will be assigned to an existing cluster with
probability proportional to the number of elements already assigned to this
cluster. This phenomenon is often referred to as the “rich get richer.” This
hyperparameter � indirectly controls how many clusters one expects to see
from the data (another approach is to treat � as unknown, using a gamma
hyperprior over �, and letting the Bayesian machinery infer the value; Blei
and Jordan, 2006).

Implementation and analysis for the nonregularized finite GMMs, regu-
larized finite GMMs, and DPGMMs was performed using MATLAB R2015b
(The MathWorks) using the Statistics and Machine Learning toolbox, the
Lightspeed toolbox, and the vdpgm toolbox (Kurihara et al., 2007).

Model selection
To identify the winning model we used the BIC, which allows one to
compute an approximation to the Bayes factor (relative evidence) for a
model. The BIC typically has two terms, the likelihood (how well the

model fits the data) and a complexity term that penalizes more complex
models with more free parameters (e.g., the number of components).
The model with the lowest BIC metric is usually preferred because it
provides the most parsimonious and generalizable model of the data.

For each one of the following datasets, model fits were performed
using nonregularized and regularized finite mixtures with up to 15 com-
ponents (up to 10 components for the subfield categories; Fig. 2): the
original dataset; the original dataset excluding null studies; each method-
ological subfield within the original dataset (genetics, psychology, neuro-
chemistry, treatment, imaging, and miscellaneous studies); and the
original dataset excluding each methodological subfield. Model selection
was then performed using the BIC to select the most parsimonious model
for each dataset. Figure 2 presents (for each dataset) the corresponding
BIC metric for increasing levels of model complexity. Plain blue lines
denote the BIC metric using nonregularized GMMs and plain red lines
denote the BIC using regularized GMMs. The BIC metric curve for non-
regularized GMMs (blue line) exhibits wide jumps (Fig. 2), whereas the
function should remain relatively smooth, as seen with regularized GMMs
(red line). This suggests that nonregularized GMMs results were prone to
overfitting and were inadequate for some of our datasets.

Finally, we compared different modeling methodologies to select and
report the most robust findings in terms of the estimation of the number
of components. We compared nonregularized GMMs, regularized GMMs,
and DPGMMs on the same datasets (Fig. 2) and found that regularized
GMMs generally provided the most conservative estimation of the num-
ber of components. We therefore opted to report these results as the main
findings.

Results
We analyzed the original sample of 730 powers (see histogram in
Fig. 3a). If the median were the most appropriate metric to de-
scribe the distribution of powers across studies, then we would
expect the GMM to produce a solution containing only a single
component. Instead, the most parsimonious GMM solution in-
cluded four components, with strong evidence in favor of this
model versus either of the next best models (i.e., GMMs with

Figure 1. Classification of studies for analysis. Description of study methodology. GMM � Gaussian mixture model.
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three or five components; Fig. 2). Importantly, this model re-
vealed that the overall distribution of power appears to be com-
posed of subgroups of lower- and higher-powered studies (Fig.
3a, overlay). We next explored possible sources of this variability,
considering the influence of both null effects and specific sub-
fields of neuroscience.

When is an effect not an effect?
The first important source of variability that we considered re-
lates to the concept of power itself. The calculation of power
depends not just on the precision of the experiment (heavily
influenced by the sample size), but also on the true population
effect size. Logically, power analysis requires that an effect (the dif-
ference between population distributions) actually exists. Conduct-
ing a power analysis when no effect exists violates this predicate and
will therefore yield an uninterpretable result. Indeed, when no
effect exists, the power statistic becomes independent of the sam-
ple size and is simply equal to the type I error rate, which by
definition is the probability of declaring a significant result under
the null hypothesis.

To illustrate this point, consider the meta-analysis titled “No
association between APOE � 4 allele and multiple sclerosis sus-
ceptibility” (Xuan et al., 2011), which included a total of 5472
cases and 4727 controls. The median effect size (odds ratio) re-
ported was precisely 1.00, with a 95% confidence interval (CI)
from 0.861 to 1.156. Button et al. (2013) calculated the median
power to be 5%, which is equal to the type I error rate. However,
as is evident from the study’s title, this meta-analysis was clearly
interpreted by its authors as indicating a null effect, which is consis-
tent with the observed result. Indeed, in this case, the power is 5% for
both the largest (N � 3000) and the smallest (N � 150) study in the
meta-analysis. In such cases, the estimate of 5% power is not easily
interpretable.

Conversely, it is problematic to assume that a nonsignificant
meta-analytic finding can be taken as evidence that there is no
true effect; in the frequentist statistical framework, failure to re-
ject the null hypothesis cannot be interpreted as unambiguous
evidence that no effect exists (due to the potential for false-negative
results). For example, the study by Chung and Chua (2011) entitled
“Effects on prolongation of Bazett’s corrected QT interval of seven
second-generation antipsychotics in the treatment of schizophrenia:
a meta-analysis” reported a median effect size (odds ratio) of 0.67,
with a 95% CI from 0.43 to 1.04. Although this result was nonsignif-
icant, the point estimate of the effect size is greater than those from
several meta-analyses that did achieve statistical significance and, in
our view, it would be premature to conclude that this effect does not
exist.

These examples illustrate the difficulty in deciding whether
conducting a power analysis is appropriate. Even tiny effect sizes
could hypothetically still exist: in any biological system, the prob-
ability that an effect is precisely null is itself zero; therefore, all
effects “exist” by this definition (with certain exceptions, e.g., in
the context of randomization), even if to detect them we might
need to test more individuals than are currently alive. However,
the notion of “falsely rejecting the null hypothesis” then loses its
meaning (Jacob Cohen, 1994). One approach would be to assume
that an effect does not exist until the observed evidence suggests
that the null hypothesis can be rejected, consistent with the logi-
cal basis of classical statistical inference. This would avoid any
potential bias toward very-low-power estimates due to nonexis-
tent effects. Conversely, this approach raises the potential prob-
lem of excluding effects that are genuinely very small, which may
cause a bias in the other direction. Within the constraints of the null
hypothesis significance testing framework, it is impossible to be con-
fident that an effect does not exist at all. Therefore, we cannot simply
assume that an effect does not exist after failing to reject the null
hypothesis because a small effect could go undetected.

Motivated by this logic (specifically, that excluding power sta-
tistics from studies included in null meta-analyses may provide
an overestimation of power because, in many instances, there
remains uncertainty as to whether a true effect exists), we initially
included studies from “null meta-analyses” (i.e., those in which
the estimated effect size from the meta-analysis was not signifi-
cantly different from the null at the conventional � � 0.05) in our
GMMs (Fig. 3a). However, we note that excluding power statis-
tics from studies included in null meta-analyses may provide an
overestimation of power because, in many instances, there re-
mains uncertainty as to whether a true effect exists. Nonetheless,
with the above caveats in mind, we also wished to assess the
degree to which null meta-analyses may have affected the results.
Null results occurred in seven of the 49 meta-analyses (92 of the
730 individual studies), contributing a substantial proportion of
the extremely low-powered studies (�10% power; Fig. 3a, white
pie chart segment of C1). When we restricted our analysis only to
studies within meta-analyses that reported statistically significant
results (“non-null” meta-analyses), the median study power (un-
surprisingly) increased, but only slightly, to 30%, and the nature
of the resulting GMM distribution did not change substantially
(Fig. 3b). In other words, excluding null meta-analyses does not
provide a radically different picture. Therefore, we also examined
another potential contributor to power variability in neurosci-
ence: the influence of specific subfields of neuroscience.

Table 2. Median, maximum, and minimum power subdivided by study type

Group
Median
power (%)

Minimum
power (%)

Maximum
power (%)

2.5 th and 97.5 th percentile
(based on raw data)

95% HDI
(based on GMMs) Total N

All studies 23 0.05 1 0.05–1.00 0.00 – 0.72, 0.80 –1.00 730
All studies excluding null 30 0.05 1 0.05–1.00 0.01– 0.73, 0.79 –1.00 638
Genetic 11 0.05 1 0.05– 0.94 0.00 – 0.44, 0.63– 0.93 234
Treatment 20 0.05 1 0.05–1.00 0.00 – 0.65, 0.91–1.00 145
Psychology 50 0.07 1 0.07–1.00 0.02– 0.24, 0.28 –1.00 198
Imaging 32 0.11 1 0.11–1.00 0.03– 0.54, 0.71–1.00 65
Neurochemistry 47 0.07 1 0.07–1.00 0.02– 0.79, 0.92–1.00 50
Miscellaneous 57 0.11 1 0.11–1.00 0.09 –1.00 38

We also provide the 2.5 th and 97.5 th percentile of the frequency distribution of power estimates of individual studies for the raw data and 95% highest-density intervals (95% HDI) for the GMMs. We used HDIs to summarize the intervals
of the most probable values from the distribution. HDIs differ from CIs in that they represent the most probable values of the distribution rather than symmetric credible intervals in a central tendency. As a result, HDIs are more suitable for
summarizing skewed and multimodal distributions than CIs. HDIs were computed using the HDRCDE R toolbox, which finds the shortest intervals such that these intervals encompass the 95% most probable values of the distribution. Multiple
intervals may be identified if a region between modes of the distribution is unrepresentative of the distribution (i.e. below the 5% threshold) (Wand et al., 1991; Hyndman, 1996; Samworth and Wand, 2010), which occurs for multimodal
data.
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Power in neuroscience subfields
As described above, we categorized each meta-analysis into one of six
methodological subfields. Interestingly, statistical power varied sig-
nificantly according to subfield (permutation test of equivalence:
p � 0.001), with genetic association studies lower (11% median
power) than any other subfield examined (all p � 0.001, Mann–
Whitney U tests). Such variability across neuroscience subfields is
consistent with the original report by Button et al. (2013), which
reported the median power of animal studies (18% and 31% for two
meta-analyses) and case-control structural brain imaging studies
(8% across 41 meta-analyses). However, even within specific sub-
fields, the distribution of power is multimodal (Fig. 3c–h). This
could represent variability in statistical practices across studies, but
another possible explanation is that the size of the effect being stud-

ied varies substantially between meta-analyses, even within the same
subfield. This alternative explanation may, at least in part, account
for the variability between (and within) subfields of neuroscience.

The large number of extremely low-powered candidate gene
association studies warrants additional comment. These were in-
cluded in the original analysis because the Web of Science classi-
fies such studies as “neuroscience” if the phenotypes in question are
neurological or psychiatric disorders. However, modern genome-
wide association studies have revealed that the overwhelming
majority of candidate gene association studies have been under-
powered because the reliable associations that have been identi-
fied are extremely weak (Flint and Munafò, 2013); therefore, very
low power is expected within this subgroup, which our analysis
confirms (Fig. 3c). This subgroup of studies can offer important

Figure 2. Model comparison and model selection analysis for GMMs, regularized GMMs, and DPGMMs. The blue and red lines display BIC scores (natural log scale) for nonregularized GMMs and
regularized GMMs, respectively, for different levels of model complexity (number of mixture components). The lowest BIC score indicates the model that provides the best compromise between
model fit (likelihood) and model complexity for the given dataset. Winning models for GMMs (purple dotted-dash vertical line), regularized GMMs (yellow dashed vertical line), and DPGMMs (green
dotted vertical line) are clearly present for each dataset, enabling direct comparison of the output for each methodology. The regularized GMM approach provided the most parsimonious
interpretation of the data on the two main datasets: all studies (a), excluding null studies (b) as well as five out of six subfield datasets (c–h).
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lessons to the rest of neuroscience: without large genetic consor-
tia, the field of neuropsychiatric genetics might still be laboring
under the misapprehension that individual common variants
make substantial contributions to the risk for developing disor-
ders. Providing that sampling and measurement are standard-
ized, pooling data across multiple sites has the potential to

improve dramatically, not only statistical power, but also the
precision on estimates of effect size.

Because numerous studies report that candidate gene associ-
ation studies are severely underpowered (Klerk et al., 2002; Col-
houn et al., 2003; Duncan and Keller, 2011), and given that
candidate gene association studies comprised more than one-

Figure 3. Power of studies. Shown are histograms depicting the distribution of study powers across all 730 studies (a) and across studies excluding null meta-analyses (b). However, we note that
excluding power statistics from studies included in null meta-analyses may provide an overestimation of power because, in many instances, there remains uncertainty as to whether a true effect
exists. Pale overlay shows the results of the regularized GMM, identifying four components (C1, C2, C3, and C4) and their relative weights within the dataset. Below the histogram, pie charts depict
methodological subfields and null meta-analyses contributing to each component. The null studies (white pie-chart sections) comprise 52 genetic studies and 40 treatment studies. The dark blue
line shows the sum of the components (overall GMM prediction). c–h, Histograms depicting the distribution of study powers across all meta-analyses separated by subfield: candidate gene
association studies (c), psychology studies (d), neurochemistry studies (e), treatment studies (f ), imaging studies (g), and miscellaneous studies (h). Pale overlays show the results of the regularized
GMM for each subfield; the dark lines show the sum of the components (overall GMM prediction).
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third of our total sample of studies, we suspected that they might
contribute heavily to the lowest-power peak in our distribution.
We confirmed this: in the absence of genetic studies, many studies
remained underpowered, but the distribution contained propor-
tionally fewer studies in the lowest-power peak (	10% power; Fig.
4a). Although low power is clearly not limited to candidate gene
association studies, they have a greater influence on the overall
power distribution than any other subfield, skewing the dis-
tribution toward the lowest-power peak (Fig. 4b–f ).

Simulating power in hypothetical fields
One clear conclusion of our analyses is that the interplay between
the proportion of true effects and the power to detect those effects
is crucial in determining the power distribution of a field. We
simulated four power graphs for hypothetical fields to illustrate
this point: one with low power (	50%) in which all effects exist
(Fig. 5a); one with high power (	90%) in which all effects exist
(Fig. 5b); one with low power (	50%), in which only a minority
(25%) of effects exist (Fig. 5c); and one with high power (	90%)
in which only a minority (25%) of effects exist (Fig. 5d). We
found that the “low-power” field did not resemble the distribu-
tion of power in neuroscience that we observed (Fig. 3a). Instead,
our findings were closest to a mixture of two distributions: Figure
5c with low (	50%) power in which only 25% of findings are true
effects and Figure 5d with high (	90%) power in which only 25%
of findings are true effects. This would be consistent with the
notion that the absence of true effects may contribute to the
distribution of statistical power in neuroscience.

Discussion
Implications for neuroscience
We argue that a very influential analysis (cited �1500 times at the
time of writing) does not adequately describe the full variety of
statistical power in neuroscience. Our analyses show that the da-
taset is insufficiently characterized by a single distribution. In-
stead, power varies considerably, including between subfields of

neuroscience, and is particularly low for candidate gene associa-
tion studies. Conducting power analyses for null effects may also
contribute to low estimates in some cases, though determining
when this has occurred is challenging. Importantly, however,
power is far from adequate in every subfield.

Our analyses do not negate the importance of the original
work in highlighting poor statistical practice in the field, but they
do reveal a more nuanced picture. In such a diverse field as neu-
roscience, it is not surprising that statistical practices differ.
Whereas Button et al. (2013) were careful to point out that they
identified a range of powers in neuroscience, their reporting of a
median result could be interpreted as implying that the results
were drawn from a single distribution, which our analyses suggest
is not the case. We confirm that low power is clearly present in
many studies and agree that focusing on power is a critical step in
improving the replicability and reliability of findings in neurosci-
ence. However, we also argue that low statistical power in neuro-
science is neither consistent nor universal.

Ethical issues accompany both underpowered and overpow-
ered studies. Animal deaths, drugs taken to human trials, and
government funding are all wasted if power is too low. However,
blindly increasing sample size across the board simply to satisfy
concerns about field-wide power failures is also not the best use of
resources. Instead, each study design needs to be considered on
its own merits. In this vein, one response to the original article
pointed out that any measure of a study’s projected value suffers
from diminishing marginal returns: every additional animal or
human participant adds less statistical value than the previous
one (Bacchetti et al., 2005, 2008, 2013).

Studies with extremely large sample sizes can also fall prey to
statistically significant findings for trivial effects that are unlikely
to be either theoretically or clinical important (Lenth, 2001; Io-
annidis, 2005; Friston, 2012; Quinlan, 2013). In other words, the
assessment of power is determined by what we consider to be an
interesting (i.e., nontrivial) effect size (Cohen, 1988). This depen-

Figure 4. GMMs excluding each subfield. GMMs for the whole population of studies excluding genetic studies (a), psychology studies (b), neurochemistry studies (c), treatment studies (d),
imaging studies (e), and the remaining miscellaneous studies (f ). Compare with the distribution including all studies (Fig. 3a).
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dency means that power considerations are meaningless in the
absence of assumptions about how large effect sizes need to be to
be considered theoretically or clinically important and this may
vary dramatically across different fields. This is particularly
relevant in fields in which multiple comparisons are per-
formed routinely, such as genetics and neuroimaging (Friston,
2012). Conversely, smaller studies can only detect large effect
sizes and may suffer from imprecise estimates of effect size and
interpretive difficulties. Crucially, there is no single study design
that will optimize power for every genetic locus or brain area. In
fact, power estimates for individual studies are themselves ex-
tremely noisy and may say little about the actual power in any
given study. A move away from presenting only p-values and
toward reporting point estimates and CIs (as long advocated
by statisticians) and toward sharing data to improve such es-
timates would allow researchers to make better informed de-
cisions about whether an effect is likely to be clinically or
theoretically useful.

Estimations of effect size
An important factor contributing to the estimation of power (at
least using the approach followed here) is whether the effect size
was estimated accurately a priori. If researchers initially overesti-
mated the effect size, then even the sample size specified by a
power calculation would be insufficient to detect a real, but
smaller effect. Interestingly, our analysis also shows the existence
of very-high-powered studies within neuroscience, in which far
more subjects have been included than would technically be war-
ranted by a power analysis. In this case, an a priori underestimate
of effect size could yield a very-high-powered study if an effect
proves to be larger than initially expected (which has occasionally
been reported; Open Science Collaboration, 2015). Another im-
portant consideration is that an overestimation of effect size
might occur due to publication bias, which will skew effect size
estimates from meta-analyses upwards, resulting in an optimistic
power estimate. This is an important caveat to the results that we
report here: a bias toward publishing significant results means that

Figure 5. Simulated power distributions for four hypothetical fields: “easy field” with low power (	0.5) and all effects exist (a); “easy field’ with high power (	0.9) and all effects exist (b); “hard
field” with low power (	0.5) (for those effects that exist), but where effects exist in only 25% of cases (c); and “hard field” with high power (	0.9) (for those effects that exist), but where effects
exist in only exist in 25% of cases (d). Power distributions were simulated by generating 50,000 power estimates for a one sample t-test with a fixed sample size (N � 45) while varying effect size.
For each panel, the effect size was sampled from a truncated (effect size�0) Gaussian distribution with mean 0.3 (a, c) or 0.49 (b, d) to represent low or high power, respectively. For the “hard” fields
(c, d), 75% of the effect size sample was generated from a half-Gaussian distribution with mean � 0. SD was set to 0.07 for all effect size distributions. Similar results can be obtained by fixing the
effect size and varying the sample size.
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the power estimates that we report will represent upper bounds
on the true power statistics. Unfortunately, we could not ade-
quately address this potential confound directly because tests of
publication bias themselves have very low power, particularly if
the number of studies in a meta-analysis is low. However, publi-
cation bias has long been reported in psychology (Francis, 2012)
and neuroscience (Sena et al., 2010), so it is reasonable to assume
that it has inflated estimates of statistical power in these analyses.

Conclusion
We have demonstrated the great diversity of statistical power in
neuroscience. Do our findings lessen concerns about statistical
power in neuroscience? Unfortunately not. In fact, the finding
that the distribution of power is highly heterogeneous demonstrates
an undesirable inconsistency both within and between methodolog-
ical subfields. However, within this variability are several appropri-
ately powered and even very-high-powered studies. Therefore, we
should not tar all studies with the same brush, but instead should
encourage investigators to engage in the best research practices,
including preregistration of study protocols (ensuring that the
study will have sufficient power), routine publication of null re-
sults, and avoiding practices such as p-hacking that lead to biases
in the published literature.

Notes
Supplemental material for this article is available at http://osf.io/duyxb.
Available are open data, including analysis scripts and meta-analysis
data. This material has not been peer reviewed.
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